

Antimicrobials

Dr Andrew Swann

Leicester Medical School

This session covers:

- A classification of antimicrobials
- Mechanisms of action
- Mechanisms of resistance
- Genetics of resistance
- Susceptibility testing
- Brief information on key antibacterials
- An introduction to antifungal, antiviral & antiprotozoal agents

A very brief history

• 1910 Paul Ehrlich discovered 1st agent

- A systematic survey of synthesised arsenicals to exploit 'selective toxicity' '606' (Salvarsan) for syphilis
- 1928 Fleming discovers penicillin the first antibiotic
- 1935 Domagk developed Prontosil
 - 1st sulphonamide red dye binding to bacteria & parasites
- 1941 Florey et al use penicillin for the first time
- 1940s/50s streptomycin, chloramphenicol, tetracycline, cephalosporins, erythromycin, vancomycin
- 1960s gentamicin
- Very few new classes in last few decades

Antimicrobials - classification

- Antibacterial, antifungal, antiviral & antiprotozoal agents
- Antibacterial agents can be classified:
 - Bactericidal or bacteriostatic
 - Spectrum 'broad' v. 'narrow'
 - Target site (mechanism of action)
 - Chemical structure (antibacterial class)

Ideal features of antimicrobial agents

- Selectively toxic
- Few adverse effects
- Reach site of infection
- Oral/IV formulation
- Long half-life (infrequent dosing)
- No interference with other drugs

Classes of antibacterials and their mechanism of action

Cell wall synthesis

Beta-lactams

glycopeptides

Cell membrane function

Polymixins (e.g. colistin)

Nucleic acid synthesis Quinolones trimethoprim rifampicin

Protein synthesis

Tetracyclines

Aminoglycosides

Macrolides

vancomycin

Mechanism of Action of Fluoroquinolones

Topoisomerase N <

Fluoroquinolone

NON

Fluoroquinolones bind to two nuclear enzymes, inhibiting DNA replication

DNA gyrase

Zhanel G. Can J Infect Dis 1999;10:207

Mechanisms of resistance

- Drug inactivating enzymes
 e.g. B-lactamases, aminoglycoside enzymes
- Altered target
 - Target enzyme has lowered affinity for antibacterial e.g. resistance to meticillin, macrolides & trimethoprim
- Altered uptake
 - –↓permeability (e.g. B-lactams)
 - or \chiefflux (e.g. tetracyclines)

Genetic basis of antibiotic resistance

- Chromosomal gene mutation
- Horizontal gene transfer

Chromosomal gene mutation

Chromosomal gene mutation

Chromosomal gene mutation

Horizontal gene transfer

conjugation transduction transformation

Horizontal gene transfer

Measuring antibiotic activity

Disc sensitivity testing

Measuring antibiotic activity

Disc testing

Minimum inhibitory concentration

Beta-lactams

Penicillins	cephalosporins		carbapenems	monobactams
benzylpenicillin	Cefalexin	1st	meropenem	aztreonam
penicillin V	Cefuroxime	2nd	imipenem	
amoxicillin	cefotaxime	3rd		
flucloxacillin	Ceftriaxone	3rd		
Co-amoxiclav	Ceftazidime	3rd		
(amox+clavulanate)				
Tazocin©				
(piperacillin+				
tazobactam				

Penicillins

Penicillin

- Mainly active against streptococci
- Amoxicillin
 - Also some activity against Gram-negatives
- Flucloxacillin
 - Active against staphylococci & streptococci
- B-lactamase inhibitor combinations
 - Co-amoxiclav (all of above +anaerobes + ↑Gneg
 - Piperacillin/tazobactam (as above + ↑↑ Gneg incl pseudomonas)

Cephalosporins

- 'Generations' with ↑Gneg and ↓Gpos
- ↑broad-spectrum but no anaerobe activity
- Cetriaxone has good activity in the CSF
- Concern over association with C. difficile

Carbapenems

- Carbapenems: Meropenem (& imipenem)
 - Very broad spectrum (incl anaerobes)
 - Active against most (not all) Gram negs
 - Generally safe in penicillin allergy, other than anaphylaxis

Glycopeptides

Vancomycin

- Active against most Gram pos (not Gnegs)
- Some enterococci resistant (VRE)
- Resistance in staphs rare
- Not absorbed (oral for *C. difficile* only)
- Therapeutic drug monitoring (TDM) required (narrow therapeutic window)

Teicoplanin

- Similar activity to vancomycin
- Easier to administer

Tetracyclines

- Tetracycline & doxycycline
 - Similar spectrum, both oral only
 - Broad-spectrum but specific use in penicillin allergy, usually for Gram pos
 - Active in atypical pathogens in pneumonia
 - Active against chlamydia & some protozoa
 - Shouldn't be given to children <12 years

Aminoglycosides

- Most common agent is gentamicin
- Profound activity against Gram negs
- Good activity in the blood/urine
- Potentially nephrotoxic/ototoxic
- Therapeutic drug monitoring (TDM) required
- Generally reserved for severe Gram neg sepsis

Macrolides

- e.g. erythromycin (& clarithromycin)
- Well distributed including intracelleluar penetration
- Alternative to penicillin for mild Gram pos infections
- Also active against atypical respiratory pathogens

Quinolones

- Commonest example ciprofloxacin
- Inhibit DNA gyrase
- Very active against Gram negs
- Also active against atypical pathogens
- Increasing resistance and risk of C. difficile

Trimethoprim & sulphonamides

- Inhibitors of folic acid synthesis
- Trimethoprim used alone in the UK for UTI
- When combined with sulphamethoxazole
 Co-trimoxazole
 - Used to treat PCP
 - Has activity against MRSA

Antifungals

- Azoles (active against yeasts +/- molds
 - Inhibit cell-membrane synthesis
 - Fluconazole used to treat Candida
 - Itra/vori/posaconazole also active against Aspergillus
- Polyenes (nystatin and amphotericin)
 - Inhibit cell membrane function
 - Nystatin for topical treatment of candida
 - Amphotericin for IV treatment of systemic fungal infections (e.g. aspergillus)

Antivirals

Aciclovir

- When phosphorylated inhibits viral DNA polymerase
- Herpes simplex genital herpes, encephalitis
- Varicella zoster chicken pox & shingles
- Oseltamivir ('Tamiflu')
 - Inhibits viral neuraminidase
 - Influenza A & B
- Specialist agents for HIV, HBV, HCV, CMV

Metronidazole: an antibacterial and Antiprotozoal agent

- Active against anaerobic bacteria
- Also active against protozoa:
 - Amoebae (dysentery & systemic)
 - Giardia (diarrhoea)
 - Trichomonas (vaginitis)

Primary care

JHL NEONATAL SECTION

UHL ADULT SECTIONS

Home Page Approved durations >

5 days (refer p11) Abdominal

Antibiotic Assays Clostridium difficile

Critical Care Units Creatinine clearance calculator

Haematology/Oncology

LRTI / Pneumonia

Line infections Meningitis

Renal dosing

Womens:Obs and Gynae

Restricted Antimicrobials

Sepsis

Skin-soft tissue-bone-joint

Surgical and Procedural Prophylaxis UTI

A-Z of Bugs and Drugs

Benzylpenicillin (Penicillin G) 🚥 🚥

- JHL CHILDRENS SECTION
 - Usual adult dose 1.2 g IV QDS increasing to 1.2 g 4-hourly for streptococcal endocarditis or 2.4 g QDS for meningococcal sepsis
 - Dosage reduction necessary if renal impairment
 - Available IV only.
 - Crosses CSF only if meninges inflamed.

Main indications

A penicillin

- Streptococcal endocarditis
- Other serious streptococcal infections, including neonatal sepsis

Active against most strains of:

- Streptococci (Group A, B, C, G, viridans, pneumoniae, milleri)
- Neisseria meningitidis
- <u>Neisseria gonorrhoeae</u> although many strains have low level resistance
- <u>Clostridium difficile</u>
- <u>Clostridium perfringens</u>

Not active against most strains of:

- <u>Staphylococci</u>
- Coliforms
- <u>Haemophilus influenzae</u>
- <u>Pseudomonas spp.</u>
- <u>Bacteroides fragilis</u>

Page last edited: 06/04/2011

😜 Internet